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Abstract. We examine the performance of a quantum phase gate implemented with cold neutral atoms in
microtraps, when anharmonic traps are employed and the effects of finite temperature are also taken into
account. Both the anharmonicity and the temperature are found to pose limitations to the performance
of the quantum gate. We present a quantitative analysis of the problem and show that the phase gate has
a high quality performance for the experimental values that are presently or in the near future achievable
in the laboratory.

PACS. 03.67.Lx Quantum computation – 32.80.Pj Optical cooling of atoms; trapping – 34.90.+q Other
topics in atomic and molecular collision processes and interactions

1 Introduction

The implementation of quantum logic gates [1] is a major
goal in the current research in quantum information. Sev-
eral schemes have been proposed in the latest years, based
on different physical systems: trapped ions [2] or neu-
tral atoms [3], cavity–QED and photons [4] molecules [5],
quantum dots and Josephson junctions [6]. The aim is to
implement a fundamental logic quantum gate that works
as a constituent block of a quantum computer [7]. One of
such gates is the phase gate, whose truth table is

|a〉|a〉 → |a〉|a〉
|a〉|b〉 → |a〉|b〉
|b〉|a〉 → |b〉|a〉
|b〉|b〉 → eiϑ|b〉|b〉. (1)

When ϑ = π, this is equivalent — up to a single-qubit
rotations — to a controlled-NOT gate. Throughout this
paper, we shall assume ϑ = π.

Atoms are very good candidates for implementing
quantum gates, because of the significant experimental
achievements realized in recent years. The techniques to
cool and trap charged and neutral atoms have lead to an
unprecedented precision in controlling even single atoms.
In particular, neutral atoms seem to be the most promis-
ing systems for quantum information processing, because
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the dissipative influence of the environment is relatively
weaker when compared to other physical systems.

A proposal for implementing a phase gate with cold
neutral atoms stored in microtraps has been recently put
forward by Calarco et al. [3]. Two atomic internal states,
denoted as |a〉 �−→ |0〉 and |b〉 �−→ |1〉, are used as log-
ical states, and the operations that realize the truth ta-
ble equation (1) involve the external degrees of freedom.
Each atom is placed in a microtrap, which can be state–
selectively switched off and substituted by a larger har-
monic potential that allows collisional interaction between
two atoms. The interaction provides the phase that ap-
pears in the truth table equation (1). For the sake of sim-
plicity, the traps were assumed to be perfectly harmonic.

In the present article we reexamine this proposal for a
phase gate and in contrast to the work in reference [3], we
employ, when it is possible and useful, the exact analytic
expression of the eigenstates of two harmonic oscillators
with contact interaction [8]. Besides, with respect to the
harmonic term, we consider the successive terms of the
Taylor series expansion of the potential. In particular we
focus on the fourth term, which yields the lowest-order
correction to the dynamics. The effects of the tempera-
ture are also examined. In realistic experimental situations
these feature will unavoidably become relevant.

The article is organized as follows: in Section 2 we de-
scribe how the quantum phase gate analyzed here can be
implemented. We stress that two conditions, (i) full revival
of the motional state and (ii) the acquisition of the correct
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phase shift, are the essential ingredients for a correct per-
formance of the gate. Then Section 2.1 describes how the
phase gate can be implemented by using neutral atoms in
microtraps and how the two conditions mentioned above
can be fulfilled. In Section 3 we examine the performance
of the gate when the atoms are at zero temperature and
oscillate in harmonic traps. This situation was already in-
vestigated numerically in [3], but here we use the exact
eigenstates of the problem. The results presented here are
in total agreement with those shown in [3]. In Section 4
we examine the performance of the gate when the trap
is anharmonic. We obtain quantitative estimates for the
quality of the gate performance. In Section 5 we present a
heuristic method that, given a certain anharmonicity, im-
proves the performance by choosing the trap parameters
in such a way as to optimize the overlap between the ini-
tial and the final state. In Section 6 we consider the case
when the atoms are at finite temperature and we provide
a quantitative measurement of the performance using a
definition of the fidelity. In Section 7 we show some con-
nections with our anharmonic model and the physical im-
plementation of the gate on atom chips. Section 8 contains
our conclusions.

2 Implementing a phase gate with neutral
atoms

A phase gate with the truth table equation (1) can be
implemented by employing two internal atomic states
(hyperfine states) as the logic values a and b and by mak-
ing use of the motional degrees of freedom of the atoms
to manipulate the qubits. In order to keep the exposition
simple, we assume that the atoms are at zero temperature,
described by the state

|ΨAB(t = 0)〉 = |ψAB(0)〉 ⊗ |χ〉
= |ψAB(0)〉(ca|aA〉 + cb|bA〉)(c′a|aB〉

+c′b|bB〉)
= |ψAB(0)〉(cac′a|aA〉|aB〉

+cac′b|aA〉|bB〉 + cbc
′
a|bA〉|aB〉

+cbc′b|bA〉|bB〉), (2)

where

|χ〉 ≡ (ca|aA〉 + cb|bA〉)(c′a|aB〉 + c′b|bB〉) (3)

is the general initial internal state of the two atoms,
the complex coefficients ca, cb, c′a, c′b satisfy the normal-
ization conditions |ca|2 + |cb|2 = 1 and |c′a|2 + |c′b|2 = 1,
and |ψAB(0)〉 is the motional state at t = 0. The exper-
imental preparation of the initial state can be made, for
example, with a phase transition from a superfluid to a
Mott-insulator, so that each atom is located in the ground
state of a single well [9]. Then, by means of optical pump-
ing one can initialize the internal state of the atoms. In
this way we have an initial state with internal and exter-
nal states factorized. The phase gate operation is obtained

with a sequence of unitary transformations that lead to
the final state

|ΨAB(t = τ)〉 = |ψAB(τ)〉(cac′a|aA〉|aB〉
+cac′b|aA〉|bB〉 + cbc

′
a|bA〉|aB〉

−cbc′b|bA〉|bB〉) (4)

at t = τ . A comparison between the two expressions (2)
and (4) for the initial and final states shows that two in-
gredients are essential: (i) a sign change must occur only
in the last term of equation (4) and (ii) the motional state
must be disentangled from the internal states at the end
of the gate operations. It is important to stress that dur-
ing the gate operation the internal states and the external
ones are entangled. Thus, we design the dynamics such in
a way that at the end of the gate operation (t = τ) the
internal states are disentangled from the external states so
that a pure logical operation is achieved. These two con-
ditions are fulfilled if the motional state, whose wavefunc-
tion is ψ(xA, xB, t), regains its initial form ψ(xA, xB, 0) at
some later time τ and acquires a phase π only when both
atoms are in the excited state.

2.1 Phase gate with two trapped cold atoms

A natural choice to obtain the recurrence of the initial
state ψ(xA, xB, 0) are atoms oscillating in harmonic traps,
where full revivals of wave packets are periodically ob-
served for any initial state of a single atom. However, the
sign change, i.e., the occurrence of a phase π in the wave
packet only if both atoms are internally excited, can be
achieved only via an interaction between the atoms that
depends on the internal states. This interaction provokes
deviations from full revivals of the wave packet and works
against a correct performance of the phase gate. The aim
of our studies is to investigate under which conditions the
complete wave packet revival is at least approximately sat-
isfied, and to evaluate the corresponding gate fidelity.

The system we consider to implement all quantum
logic gates is an array of cold bosonic neutral atoms con-
fined in microtraps. Experimentally there are different
techniques to trap neutral atoms. As an example, opti-
cal dipole traps using holographic techniques [10]. Holo-
graphic optical tweezers use a computer designed diffrac-
tive optical element to split a single collimated beam
into several beams, which are then focused by a high
numerical aperture lens into an array of tweezers. Then,
by using computer-driven liquid crystal spatial light mod-
ulators [11], the optical potential of each trap can be con-
trolled and reconfigured and for instance each site can be
moved and switched on and off independently from the
others.

Another proposal is based on the employing of micro-
optical elements [12]. An array of dipole traps can be ob-
tained by focusing a laser beam into a MOT with an arrays
of microlenses, where each trap could be addressed indi-
vidually. In this case one employs one-dimensional arrays
of cylindrical microlenses. A laser beam is sent through
such a system and forms a series of parallel focal lines
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Fig. 1. Configuration at times t < 0 and t > τ (a), and during
the gate operation (b). The solid (dashed) curves show the
potentials for atoms in internal state |a〉 (|b〉).

above the lens array. With a laser detuning below an
atomic resonance a one-dimensional array of linear waveg-
uides is formed and atoms are confined in the two dimen-
sions perpendicular to the lens axis. An alternative ap-
proach is to use magnetic confinement generated by thin
gold wires (1 to 30 µm width) mounted on surfaces (typical
materials are silicon, gallium arsenide, aluminum nitride),
the so called “atom chips” [13]. The loading of cold atoms
into the chip traps can be made in two steps: cool and trap
atoms close to the surface in a surface MOT, and transfer
the atoms from there to the microtraps on the chip.

We briefly describe how the gate works at tempera-
ture T = 0. More details can be found in [3]. We assume
that bosonic rubidium atoms are employed and use typi-
cal experimental values for the parameters. For the sake
of simplicity, we focus our attention on only two atoms,
under the assumption that we can restrict our analysis
to a one-dimensional system. For this purpose a strong
harmonic confining potential, with frequency ω⊥, in the
transverse directions y and z can be employed.

According to Figure 1, at t < 0 the two atoms are con-
fined in two harmonic microtraps of frequency ω0, centred
at x = −x0 and x = x0, respectively. The distance be-
tween the two traps is such that the atoms do not inter-
act each other. At time t = 0, the shape of the trapping
potential changes for the particles in the state |b〉 into a
common harmonic well of frequency ω < ω0, centred at
x = 0 [dashed line in Fig. 1b], whereas the potentials for
the particles in state |a〉 remain unchanged [solid line in
Fig. 1b]. By removing the barrier, particles in state |b〉
start to oscillate and will collide. As a last step, the atoms
have to be restored to the initial motional state of Fig-
ure 1a. The whole process of switching potentials is per-
formed through switching the shape of the potential in-
stantaneously at times t = 0 and t = τ , where τ is a
multiple of the oscillation period in the well of Figure 1b
(dashed line).

In order to avoid undesired interactions between the
two atoms in different internal states, the atom in the
ground state is shifted in the transverse direction. Indeed,
this interaction would spoil the performance of the quan-
tum gate, as already discussed in [3]. Only when both

atoms are excited they oscillate in the central trap and
interact.

For convenience of notation, let us define the following
Hamiltonians

H−
0 =

p2

2M
+

1
2
Mω2

0(x+ x0)2 (5)

H+
0 =

p2

2M
+

1
2
Mω2

0(x− x0)2 (6)

H0 =
p2

2M
+

1
2
Mω2x2 (7)

Hλ
N = H0 +

M2ω3

�
λx4

N, N = A,B (8)

Hλ
AB = Hλ

A +Hλ
B + 2as�ω⊥δ(xA − xB). (9)

The Hamiltonians (5) and (6) describe the atoms oscillat-
ing in the harmonic microtraps with frequency ω0, cen-
tred in −x0 and x0, respectively, where the two atoms
are placed before the gate operation. The atoms remain
in these traps when they are in the internal ground state.
The Hamiltonian (7) describes one atom freely oscillat-
ing in the central trap with frequency ω. The Hamilto-
nian (8) describes an anharmonic central trap, derived
from the harmonic oscillator Hamiltonian (7) by adding a
quartic term, where the dimensionless parameter λ mea-
sures the strength of the anharmonicity. The choice of this
particular form of the anharmonic trap will be justified
in Section 4. Finally, the Hamiltonian (9) describes two
atoms in the anharmonic central trap interacting via a
contact potential described by the Dirac delta function
δ(xA − xB). The coupling strength depends on the three-
dimensional scattering length as of the two atoms in the
internal |b〉 and on the frequency ω⊥ [14,15]. We recall
that the approximation 2as�ω⊥δ(xA − xB) is valid only
for l⊥ = [�/(Mω⊥)]1/2 � as.

The initial state of the two atoms is

|ψAB(0)〉 = |ϕ−
0A〉(ca|aA〉 + cb|bA〉)

× |ϕ+
0B〉(c′a|aB〉 + c′b|bB〉) (10)

where ϕ±
n denote the eigenstates of H±

0 . The gate opera-
tion is described by a unitary evolution operator Uα,β(t),
which depends on the internal states α, β = a, b of the two
atoms and transforms the initial state into

|ψAB(t)〉 = Uα,β(t)|ψAB(0)〉
=

(
e−iω0t|ϕ−

0A〉
) (
e−iω0t|ϕ+

0B〉
)
cac

′
a|aA〉|aB〉

+
(
e−iω0t|ϕ−

0A〉
) (
e−

i
�

Hλ
Bt|ϕ+

0B〉
)

× cac
′
b|aA〉|bB〉

+
(
e−

i
�

Hλ
At|ϕ−

0A〉
) (
e−iω0t|ϕ+

0B〉
)

× cbc
′
a|bA〉|aB〉

+
(
e−

i
�

Hλ
ABt|ϕ−

0A〉|ϕ+
0B〉

)
cbc

′
b|bA〉|bB〉 (11)

at a later time t. Here the anharmonicity of the central
trap has been taken into account. The state equation (11)
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is in general no longer a separable state of motional and in-
ternal degrees of freedom. However, in the present scheme
the separation between the states of the motional and in-
ternal degrees of freedom can be realized to a good ap-
proximation. Indeed, the state

|ψaa
AB(t)〉 ≡ (

e−iω0t|ϕ−
0A〉

) (
e−iω0t|ϕ+

0B〉
)

(12)

describes two harmonic oscillators in two well-separated
microtraps and has therefore full revivals with period
T 0

osc ≡ 2π/ω0 for any initial state. The states

|ψab
AB(t)〉 ≡ (

e−iω0t|ϕ−
0A〉

) (
e−

i
�

Hλ
Bt|ϕ+

0B〉
)

(13)

and

|ψba
AB(t)〉 ≡

(
e−

i
�

Hλ
At|ϕ−

0A〉
) (
e−iω0t|ϕ+

0B〉
)

(14)

describe one atom in the microtrap and the other in the
central trap. In this case, the atom in the microtrap is
shifted in the transverse direction in order to avoid un-
desired interaction between the atoms. Therefore, if the
central trap is harmonic (λ = 0), full revivals of the two
wave packets at different periods occur.

The state

|ψbb
AB(t)〉 ≡

(
e−

i
�

Hλ
ABt|ϕ−

0A〉|ϕ+
0B〉

)
(15)

is affected by the interaction between the atoms in the
wide trap. This interaction is necessary in order to yield
the sign change for the phase gate operation but it also
modifies the atomic wave packet. For a good performance
of the quantum gate the modification must be small. The
overlap fidelity

O(ψbb
AB, t) ≡ 〈ψbb

AB(t)|ψAB(0)〉 (16)

between the initial motional state |ψAB(0)〉 and that at a
later time t > 0, |ψ11

AB(t)〉 gives an estimate of the quality
of the gate performance. If the revival of the motional
state is nearly complete at t = τ , it results

|O(ψbb
AB, τ)|2 � 1. (17)

Under this condition, we can write the motional state at
time τ as

|ψbb
AB(τ)〉 � e−iφbb(τ)|ψAB(0)〉 (18)

where φbb(τ) denotes the phase of the motional wave func-
tion. When

φbb(τ) = π, 3π, 5π, . . . , (19)

the phase gate operation is correctly realized. In the next
sections we investigate when the two conditions of full or
nearly full revival (expressed by Eq. (17)) of the motional
state of the excited atoms and the acquisition of the cor-
rect phase (expressed by Eq. (19)) are satisfied.

3 Ideal case: two cold atoms in harmonic
traps

We examine first the performance of the quantum phase
gate when all traps are harmonic. This ideal situation was
already investigated in [3], but we examine it again, be-
cause here we use the exact solutions of the Schrödinger
equation for this problem. Indeed, it has been recently
found that the problem of two interacting atoms in one
harmonic trap has an exact solution in one, two and three
dimensions [8]. Here we simply summarize the results for
one dimension. It is useful to define the new coordinates
X ≡ (xA + xB)/

√
2 and x ≡ (xA − xB)/

√
2. The pseudo–

particle described by the centre of mass coordinate X is a
free harmonic oscillator, with eigenstates ϕn(X) and en-
ergy En = �ω(n+1/2). The pseudo–particle described by
the relative coordinate x describes a harmonic oscillator
that feels the contact potential at the origin x = 0. Its
eigenstates split into two subsets, depending on the func-
tion parity. The odd eigenstates are still those of the free
harmonic oscillator, since the contact potential acts only
at x = 0, where the odd wave functions vanish. The even
solutions

ϕν(x) ≡ Bν

(
Mω

�

)1/4

exp
[
−Mω

2�
x2

]
U

(
−ν, 1

2
;
Mω

�
x2

)

(20)
have energy Eν ≡ �ω(2ν + 1/2), and the function U is
the confluent hypergeometric function [16]. Here the real
parameters ν are solution of the transcendental equation

Γ (1/2 − ν)
Γ (−ν) = − 1√

2
as

ax

ω⊥
ω

(21)

where ax ≡ √
�/(Mω) is the characteristic length asso-

ciated with the central trap and the normalization coeffi-
cients

Bν =

√
Γ (1/2 − ν)Γ (−ν)

π[ψ(1/2 − ν) − ψ(−ν)] (22)

are defined with the help of the logarithmic derivative ψ
of the gamma function.

With the help of these exact eigenstates we evaluate
the fidelity equation (17) and the phase shift equation (19)
when both atoms are excited. At t < 0 the two atoms are
in the motional ground states of their own microtrap, say,
atom A in the left trap, centred at x = −x0, and atom B in
the right trap, centred at x = x0. At t = 0 the microtraps
are switched off, the central trap is switched on and both
atoms oscillate in the same trap and interact. In order to
calculate the overlap fidelity equation (17), we can pro-
ceed in two different but equivalent ways. Since the atoms
are identical, the gate performs correctly even when the
two atoms end up in the other trap at the end of the oper-
ation. We can therefore either symmetrize the initial wave
function for the two bosonic atoms, or estimate the over-
lap fidelity equation (17) as the sum of the probabilities
to find the (distinguishable) atoms in the original traps
or with the initial positions interchanged. Since in this
section we use the wave functions of the center of mass X



A. Negretti et al.: Performance of quantum phase gates with cold trapped atoms 123

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
ab0

(t
)|

Ψ
ab

(0
)〉

|2

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
bb0

(t
)|

Ψ
bb

(0
)〉

|2

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
ab

(t
)|

Ψ
ab

(0
)〉

|2

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
bb

(t
)|

Ψ
bb

(0
)〉

|2

0 2 4 6
0.98

0.99

1

|〈Ψ
bb0

(t
)|

Ψ
bb

(t
)〉

|

t/T
osc

0 0.5 1 1.5 2
0

0.25

0.5

φ bb
(t

)/
π

t/T
osc

Fig. 2. Dynamics during gate operation: projection of the ini-
tial state on the state evolved without (top) and with inter-
action (center); projection of the evolved state on the cor-
responding state evolved without interaction (bottom left)
and interaction-induced phase shift (bottom right). We choose
ω = 2π×17.23 kHz and ω⊥ = 2π×150 kHz with the initial wells
having a frequency ω0 = 2ω and displaced by x0 = 410 nm.
This reproduces analytically the results obtained in [3] with a
purely numerical approach.

and of the relative coordinate x, the first approach is more
convenient. The two-atom motional state at generic time
t > 0 is

ψ(X,x, t) =
∑

n,ν

cn,νe
−i(n+2ν+1)ωtϕn(X)ϕν(x) (23)

where the odd eigenstates of the relative coordinate x
are not included since they describe fermions. The coeffi-
cients cn,ν vanish when n is odd, otherwise

cn,ν = 2π−1/4

√
ω0

n(ω0 + ω)
e−

Mω0x2
0

� 2−n/2

×
√
n!

(n/2)!

(
ω − ω0

ω + ω0

)n/2

BνIν (24)

where

Iν =
∫ ∞

−∞
dye−(1+ ω0

ω ) y2

2 U
(−ν, 1/2; y2

)

× cosh

[

x0ω0

√
2M
�ω

y

]

. (25)

In Figure 2 we show the overlap fidelity, equation (17).
The revival of the motional state, occurs with periodicity
Tosc/2. Indeed, after this period the two atoms are in x =
±x0. The revival is nearly complete, as the overlap fidelity
approaches the value 0.99. In Figure 2 we also report the
situation in which atoms in different internal states feel a
contact potential in order to show what happens.

In Figure 2 we show the phase shift φbb(τ) due to the
interaction. There is a fast change of the phase between
the two revivals, in correspondence to the presence of the
two atoms at the bottom of the trap, where the interaction
occurs. The figure suggests that one can assume that at
each interaction there is a jump in the phase. Therefore,
after a suitable number of collisions, the motional state
acquires the correct phase for the gate operation. The ex-
act results shown here confirm the validity and accuracy
of the results of reference [3] obtained numerically.

4 Phase gate performance with anharmonic
traps

The operation of the phase gate relies on several simplify-
ing assumptions. In the previous section we have assumed
that the atoms are at zero temperature and oscillate in
harmonic traps. The experimental conditions are neces-
sarily less ideal and the problem of estimating the effect
of deviations from the ideal conditions is particularly im-
portant. Among the causes that can lead to bad perfor-
mance of the phase gate, we mention random noise, caused
by fluctuating electromagnetic fields, temperature effects
and anharmonicity of the trapping potentials. In particu-
lar, some anharmonicity might more easily appear in the
wider central trap and seems to be the most important
disturbance to be taken into account.

In this section we study the gate performance when
the excited atoms oscillate in an anharmonic trap, as de-
scribed by the Hamiltonians equations (8) and (9). Indeed,
independently of its exact expression, we can expand the
trapping potential in Taylor series. The first correction
to the harmonic approximation is a cubic term, that we
shall neglect since at first order of approximation it does
not lead to any correction to the energy and it does not
affect the atomic motion.

The next relevant correction to the harmonic trap is
a quartic term. It is symmetric and it is responsible for
an energy shift. We neglect the other terms in the Taylor
expansion, which yield minor perturbations. The atom dy-
namics in the central trap is then described by the Hamil-
tonians (8) and (9).

The atomic wave packet does no longer show full re-
vivals. Moreover, the partial revivals of the initial state
that still occur are no longer periodic, in a strict sense.
Therefore, the question arises as to how much anharmonic-
ity can be tolerated without destroying the good perfor-
mance of the phase gate.

4.1 Anharmonic trap: overlap fidelity for the internal
states |aA〉|bB〉 and |bA〉|aB〉
In this subsection we examine the performance of the gate
when only one atom is in the internal excited state. During
the gate operation the excited atom (atom A in the left
trap, say) oscillates freely in the central anharmonic trap,
while atom B oscillates as a free harmonic oscillator in
its microtrap. We need only to focus our attention on the



124 The European Physical Journal D

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
ab

(T
os

c|Ψ
ab

(0
)〉|2 λ=10−4

λ=10−3

λ=0.005

0 0.5 1 1.5 2
0

0.5

1

|〈Ψ
bb

(T
os

c|Ψ
bb

(0
)〉|2

t/T
osc

λ=10−4

λ=10−3

λ=0.005

Fig. 3. Dynamics during gate operation: projection of the ini-
tial state on the state evolved with different values of anhar-
monicity. Trap parameters have the same values as in Figure 2.

motion of atom A, whose vibrational state at time t can
be expanded on eigenstates of the harmonic oscillators
according to

|ψA(t)〉 =
∑

n

cn(t)e−i2πnt|ϕnA〉
(
t −→ t

Tosc

)
(26)

where ϕn denotes the eigenstates of H0 and Tosc is the
period of oscillation of the central trap [dashed line in
Fig. 1b]. The expansion coefficients ck(t) satisfy the dif-
ferential equations

ċn(t) = −iπ
2
λ
{√

(n+1)(n+2)(n+3)(n+4)cn+4(t)e−i8πt

+2(2n+ 3)
√

(n+ 1)(n+ 2)cn+2(t)e−i4πt

+3
[
(n+ 1)2 + n2

]
cn(t)

+2(2n− 1)
√

(n− 1)ncn−2(t)ei4πt

+
√

(n− 3)(n− 2)(n− 1)ncn−4(t)ei8πt
}
. (27)

The overlap fidelity is

|Oba(t)|2 ≡ |〈ϕ−
0A|e−

i
�

Hλ
At|ϕ−

0A〉|2

= |
∑

k

ck(t)e−i2πktc∗k(0)|2 (28)

where
ck(0) ≡ 〈ϕkA|ϕ−

0A〉. (29)

The overlap fidelity (16) has been evaluated numerically
and is plotted in Figure 3 on the top for different values
of the parameter λ. It is evident from the figure that the
gate tolerates some anharmonicity, with a threshold value
of the order of λ ∼ 10−4. The specular case of atom B ex-
cited, while atom A is not excited, gives the same results.

4.2 Anharmonic trap: overlap fidelity for the internal
state |bA〉|bB〉
Here we examine the performance of the gate when both
atoms are excited. We expand the motional state of the

two atoms on the eigenstates of the central harmonic trap

|ψAB(t)〉 =
∑

k,l

ck,l(t)e−i2π(k+l)t|ϕkA〉|ϕlB〉
(
t −→ t

Tosc

)
(30)

and the expansion coefficients ck,l(t) satisfy the equations

ċk,l(t) = −i4ω⊥
ω
as

√
mω

�
ei(k+l)2πt

×
∑

n,m

cn,m(t)e−i(n+m)2πtAklnm

− i
π

2
λ

[√
k(k − 1)(k − 2)(k − 3) ck−4,l(t)e8iπt

+ (4k − 2)
√
k(k − 1)ck−2,l(t)e4iπt

+ (6k2 + 6k + 3)ck,l(t)

+ (4k + 6)
√

(k + 1)(k + 2)ck+2,l(t)e−4iπt

+
√

(k + 1)(k + 2)(k + 3)(k + 4)ck+4,l(t)e−8iπt

+
√
l(l− 1)(l − 2)(l − 3)ck,l−4(t)e8iπt

+ (4l − 2)
√
l(l − 1)ck,l−2(t)e4iπt

+ (6l2 + 6l+ 3)ck,l(t)

+ (4l + 6)
√

(l + 1)(l+ 2)ck,l+2(t)e−4iπt

+
√

(l + 1)(l + 2)(l + 3)(l + 4)ck,l+4(t)e−8iπt
]

(31)

where

Aklnm ≡ 1√
2k+l+n+m

√
k!l!n!m!

×
∫ ∞

−∞
dξe−2ξ2

Hk(ξ)Hl(ξ)Hn(ξ)Hm(ξ) (32)

and Hn denotes the Hermite polynomial of order n. The
first term in equation (31) comes from the contact inter-
action between the two atoms, whereas the other terms
are due to anharmonicity. Assuming that the atoms are
distinguishable, the overlap fidelity is

Obb(t) =
∣
∣∣
〈
ϕ−

0Aϕ
+
0B

∣
∣∣e−

i
�

Hλ
ABt

∣
∣∣ϕ−

0Aϕ
+
0B

〉∣
∣∣
2

+
∣
∣
∣
〈
ϕ+

0Aϕ
−
0B

∣
∣
∣e−

i
�

Hλ
ABt

∣
∣
∣ϕ−

0Aϕ
+
0B

〉∣
∣
∣
2

=

∣
∣∣
∣
∣

∑

kl

ckl(t)e−ik2πte−il2πtcAB∗
kl (0)

∣
∣∣
∣
∣

2

+

∣
∣
∣
∣
∣

∑

kl

ckl(t)e−ik2πte−il2πtcBA∗
kl (0)

∣
∣
∣
∣
∣

2

(33)
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Fig. 4. Overlaps |O (ψαβ, τ )| in order to optimize the perfor-
mance of the phase gate.

where we have defined

cAB∗
kl (0) ≡ 〈ϕ−

0Aϕ
+
0B |ϕkAϕlB〉

cBA∗
kl (0) ≡ 〈ϕ+

0Aϕ
−
0B |ϕkAϕlB〉. (34)

We have numerically evaluated the overlap fidelity, which
is shown in Figure 3 on the bottom for different values
of the parameter λ. Also in this case we see that an an-
harmonicity of the order of λ ∼ 10−4 or less does not
prejudicate the performance of the phase gate.

In conclusion of this section, we note that different
choices of the values of the parameters lead to very dif-
ferent performance qualities. For a fixed value of the an-
harmonicity parameter λ different gate performances are
obtained for different values of the other parameters. From
the first term on the right hand side of equation (31) one
sees that the effect of the contact interaction on the atom
dynamics depends on the value of ω⊥/ωas (Mω/�)1/2. If
this quantity is larger than ≈0.7, it spoils the occurrence
of full revivals; if it is too small, too many oscillations are
needed to create the phase φbb(t) = π. We also note that
the frequency ω⊥ must be large enough to prevent exci-
tations along the transverse direction (l⊥ � as). In spite
of these limitations, it is possible to find reasonable val-
ues for these parameters that make a correct performance
possible, as the data in Figure 3 (bottom) show.

5 Optimization of gate performance

The gate perfomance can be optimized reducing the num-
ber of oscillations and selecting the trap frequencies ω(λ)
and ω⊥(λ) such that the overlaps |O (ψαβ , τ)| are close
to one. In this way we have two effects: better perfor-
mance and faster gate. In Figure 4 we report the overlaps
|O (ψαβ , τ)| for two different anharmonic situations.

In Table 1 we report the values that optimize the per-
formance.

Table 1. Trap frequencies maximizing the fidelity curves in
Figure 4.

λ ω (kHz) ω0 (kHz) ω⊥ (kHz)

10−4 2π × 12.00 4 × ω 2π × 769.00

10−3 2π × 7.50 4 × ω 2π × 517.01

0 0.5 1
0

1

|O
(Ψ

ab
,t)

|2

λ=10−4

0 0.5 1
0

1
λ=10−3

0 0.5 1
0

1

|O
(Ψ

bb
,t)

|2

0 0.5 1
0

1

0 0.5 1
0.7

1

|O
0(Ψ

bb
,t)

|

0 0.5 1
0.7

1

0 0.5 1
0

1

φ bb
/π

t/T
osc

numerical
approximate

0 0.5 1
0

1

t/T
osc

numerical
approximate

Fig. 5. Dynamics during gate operation: projection of the
initial state on the evolved state with interaction (first two
rows); projection of the evolved state on the corresponding
state evolved without interaction (third row) and interaction-
induced phase shift (bottom). The displacement of the two
initial separated wells is the same as in Figure 2.

With these values we obtain the results shown in Fig-
ure 5. The crosses in the bottom pictures of Figure 5 are
obtained by means of these two assumptions: (i) the par-
ticles move against each other, come in contact during
a certain time interval [ti, tF ] and then separate again;
and (ii) the velocity of each particle and the shape of its
wave function do not vary during the interaction. It fol-
lows that (see Ref. [3] for more details)

φbb (Tosc) = 2
ω⊥as

ωv
(35)

in harmonic oscillator units. Here the velocity v is a posi-
tive constant value given by

v = |∂t〈ψ±(t)|x|ψ±(t)〉|t=tk
|

= 2R
{

∑

n

cn (tk)E0
n

[√
n+ 1

2
cn+1 (tk)−

√
n

2
cn−1 (tk)

]

+ iλ
∑

n,q

cn (tk)cq (tk) ei(n−q) π
2

[√
n+ 1

2
I4

n+1,q

+
√
n

2
I4

n−1,q

]}

,
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where I4
n+1,q and I4

n−1,q are given by

Is
n,q =

[
2n+qn!q!π

]−1/2
∫ +∞

−∞
dxe−x2

xsHn(x)Hq(x),

(36)
whereas the coefficients cn(t) are given by equation (27)
and tk = (2k + 1)Tosc/4 with k an integer.

Figure 5 shows that there is a good agreement be-
tween the numerical result (solid line) and that given
by equation (35). The agreement is not perfect, though,
simply because the velocity is not constant during the
interaction.

6 Gate performance in anharmonic traps
at finite temperature

Now we examine the gate performance when both anhar-
monicity and temperature effects are taken into account.
Since the atoms are not in the ground state of the initial
trapping potential and therefore their temperature T �= 0,
it follows that, for a finite temperature T , the initial state
of the two atoms is described by the density matrix

ρ0 =
1
Z

∞∑

k,l=0

Pk,l(T )|ϕ−
kA〉|ϕ+

lB〉 ⊗ 〈ϕ−
kA|〈ϕ+

lB| (37)

where the occupation probabilities of the k and l states are
calculated assuming, for each atom, a thermal distribution
corresponding to temperature T , as expressed by

Pk,l(T ) ≡ exp
[
− �ω0

kBT
(k + l)

]
(38)

and

Z =
∞∑

k,l=0

Pk,l(T ) (39)

is the canonical partition function.

6.1 Gate fidelity

The most general logical input state has the form

|χ〉 =
1∑

α,β=0

cαβ |α, β〉, (40)

which is an arbitrary superposition of all two-qubit com-
putational basis states. The goal of gate operation is to
obtain the ideal output

|χ̃〉 =
1∑

α,β=0

cαβe
iφαβ |α, β〉. (41)

This is equivalent to the desired two-qubit transformation
equation (1): provided that ϑ = φ00 + φ11 − φ01 − φ10,
the one can be recovered from the other by redefining the
logical states via qubit rotations.

Since in this case the two atoms are described by a
density matrix, we cannot use the overlap fidelity con-

Table 2. Fidelity at T = 0 for two values of anharmonicity.

λ F

10−4 0.99

10−3 0.97

dition equation (17) to estimate the performance of the
phase gate. We use therefore the minimum fidelity [17] to
characterize the quality of the phase gate performance [3],

F = min
χ
F (χ)

= min
χ

〈χ̃|Trext[US(ρint ⊗ ρ0)S†U†]|χ̃〉. (42)

Here ρint = |χ〉〈χ| is the density matrix of the internal
state equation (3) and S denotes an operator that sym-
metrizes the atomic state. If we write

|χ〉 =
3∑

n=0

cn|n〉 (43)

and assume

U [|n〉 ⊗ ρ] ≈ |n〉 ⊗ U [ρ] , (44)

the fidelity takes the form

F = min
{cn}

∑

n,k

|cn|2 |ck|2 Tnk, (45)

where

Tnk = ei(φn−φk)
∑

n1,n2

Pn1n2(T )〈n2, n1|U†
nUk|n1, n2〉. (46)

The minimum of the fidelity F (χ) is evaluated in the Ap-
pendix. For the ideal case, that is, without anharmonicity
but with the exact solutions given by (20), the fidelity at
T = 0 is F ≈ 0.99.

In Table 2 we show the values of the fidelity at zero
Kelvin with the frequencies given in Table 1, which opti-
mizes the fidelity, for different values of the anharmonicity.
It is important to note that these results are obtained con-
sidering τ = Tosc instead of τ = 7Tosc as in reference [3],
in order to improve the gate time operation.

When the atoms are at finite temperature, the fidelity
decreases. If we define γ = exp [−�ω0/ (kBT )] and evalu-
ate (46) neglecting terms of the order O

(
γ3

)
the fidelity

turns out to be F ≈ 0.97 for λ = 10−4 at T ≈ 0.5 µK.
In Figure 6 we show the behavior of the fidelity with the
temperature for λ = 10−4 and λ = 10−3.

It is important to highlight that, since different val-
ues of λ lead to different optimal trap frequencies ω0(λ),
the curves in Figure 6 are plotted as a function of the ra-
tio kBT/(�ω0(λ)). Thus, e.g., the maximum value of the
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for 87Rb. Trap parameters have the values given in Table 1.

x-axis of the λ = 10−4 curve corresponds at a temperature
of the order of about 1 µK and for λ = 10−3 is 0.1 µK, an
order of magnitude smaller.

7 Estimating λ in a realistic situation

We show how λ is related to the trap’s parameters and the
properties of the atoms used in actual experiments where
magnetic traps are used for the confinement of neutral
atoms. The interaction between the magnetic dipole mo-
ment of an atom in some hyperfine state |F,mF 〉 and an
external magnetic field B is

Hint = −µ · B. (47)

In an inhomogeneous magnetic field, if the atomic motion
is slow as compared with the velocity of change of the field
vector as seen by the moving atom, the interaction only
depends on the absolute value of the field:

Hint = −µzB = gFmFµBB, (48)

where µB is the Bohr magneton and gF is the Landé
factor. As in [3], we consider here an atomic mirror
like the one realized [18,19] from a solid-state magnetic
medium with permanent sinusoidal magnetization M =
(M0 cos [kMx, 0, 0]) along the x-axis. In order to avoid trap
losses, due to spin flips occurring at magnetic field ze-
ros [20], it is necessary to apply a certain external bias
field B2 along the y-direction. Moreover, to obtain a cor-
rugation in the magnetic field modulus, we add a rotating
external field B1 in the xz-plane, at an angle θ with the
surface that can be varied at will. In this case the magnetic
trapping potential is

VmF (x) = gFµBmF

{[
B0e

−zkM cos2 (kMx) +B1 cos θ
]2

+
[
B0e

−zkM sin2 (kMx) +B1 sin θ
]2

+B2
2

}1/2

(49)

where B0 = µ0M0

(
1 − e−kM δ

)
/2 and δ is the tape thick-

ness. The minima of VmF (x) form a periodic pattern above
the tape surface, at a height z0 = kM ln(B0/B1). The
spacing between two nearest minima along x is just the
period of the magnetization δxM ≡ 2π/kM . From the se-
ries expansion of equation (49) along x for θ = 0 around
its minimum, we obtain for the anharmonicity parameter

λ =
π3

�kM√
mµBB2

(
B1

B2
+

B2

3B1

)
(50)

which, for 2πk−1
M around a few µm and for fields Bi of a

couple hundred Gauss, is of the order of 10−3.

8 Conclusions

In the present paper we have extended the investigations
concerning the performance of a phase gate, as proposed
by Calarco et al. in reference [3]. The phase gate em-
ploys cold trapped neutral atoms and the gate operation is
obtained with internal state–selective trapping potentials
that allow collisional interaction between the atoms.

A correct performance of quantum gates is an essential
ingredient of a quantum computer. We have therefore re-
laxed the ideal conditions in reference [3] in order to check
the tolerance of the proposed scheme to experimental im-
perfections. We have considered the effects of two pos-
sible sources of undesired disturbance, i.e., non-perfectly
harmonic trapping potentials and temperature. The most
crucial parameter is the trap anharmonicity λ. By study-
ing the dependence of the gate fidelity on such parameter,
we have been able to give a prescription to adjust other
trap parameters as to compensate for this source of in-
fidelity. However, we found a critical value for λ around
10−3 where the fidelity starts to be significantly degraded
(i.e., well beyond any threshold for fault-tolerant quan-
tum computation). This value turns out to be right on
the edge of what can be presently achieved with magnetic
micropotentials (atom chips). Thus a further optimization
is needed.

The gate performance could be improved by changing
the shape of the trapping potential during the gate oper-
ation. This requires the simultaneous variation of various
physical parameters, λ, ω, ω0, and ω⊥, since the fidelity
depends on all these quantities. A viable approach to nu-
merically search for improved solutions is given by quan-
tum optimal control theory [21], and will be the subject
of future investigations.
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Appendix: Fidelity

We see how it is possible to calculate the minimum of the
expression (45). Let us define the function

L (xγ) =
∑

α,β

xβxαTβα, (51)

where xγ = |cγ |2 with the constraint given by the set of
zeros of the function

G (xγ) =
∑

α

xα − 1. (52)

Thus we have to solve the linear system of equations

∇L− λ∇G = 0. (53)

that is,

Mαβxβ = λ Mβα = Tβα + Tαβ. (54)

The minimum of L is then

L =
1
2




∑

βα

xβxαTβα +
∑

αβ

xαxβTαβ





=
1
2

∑

αβ

xβ [Tβα + Tαβ]xα

=
1
2

∑

β

xβ

∑

α

Mβαxα =
1
2

∑

β

xβλ =
λ

2
. (55)

References

1. M.A. Nielsen, I.L. Chuang, Quamtum Computation and
Quantum Information (Cambridge University Press, 2000)

2. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);
Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998);
T. Calarco, J.I. Cirac, P. Zoller, Phys. Rev. A 63, 062304
(2001)

3. T. Calarco et al., Phys. Rev. A 61, 022304 (2000)
4. Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995); X.

Maitre et al., Phys. Rev. Lett. 79, 769 (1997); E. Hagley
et al., Phys. Rev. Lett. 79, 1 (1997); T Pellizzari, S.A.
Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 75, 3788
(1995)

5. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad.
Sci. USA 94, 1634 (1997); N.A. Gershenfeld, I.L. Chuang,
Science 275, 350 (1997)

6. See Fortschr. Phys. 48, No. 9–11 (2000), special issue on
quantum computing

7. A. Barenco et al., Phys. Rev. A 52, 3457 (1995)
8. T. Busch et al., Found. Phys. 28, 549 (1998)
9. M. Greiner et al., Nature 415, 39 (2002)

10. N. Schlosser et al., Nature 411, 1024 (2001); S. Bergamini
et al., preprint arXiv:quant-ph/0402020

11. D.G. Grier, Nature 424, 810 (2003)
12. R. Dumke et al., Phys. Rev. Lett. 89, 220402 (2002)
13. R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002)
14. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)
15. D.S. Petrov et al., Phys. Rev. Lett. 85, 3745 (2000)
16. M. Abramowitz, I.A. Stegun, Handbook of mathematical

functions (Dover publications, New York, 1972)
17. B. Schumacher, Phys. Rev. A, 54, 2614 (1996)
18. T.M. Roach et al., Phys. Rev. Lett. 75, 629 (1995)
19. E.A. Hinds et al., Phys. Rev. Lett. 80, 645 (1998)
20. E.A. Hinds, Philos. Trans. R. Soc. Lond. A 357, 1409

(1999)
21. See, e.g., S. Sklarz, D. Tannor, Phys. Rev. A 66, 53619

(2002)


